ENGINEERING TOMORROW

Data Sheet

Клапаны регулирования уровня жидкости Тип **PMFL/PMFH** и **SV**

Предназначены для регулирования уровня жидкости в холодильных установках, морозильных установках, а также в установках кондиционирования воздуха.

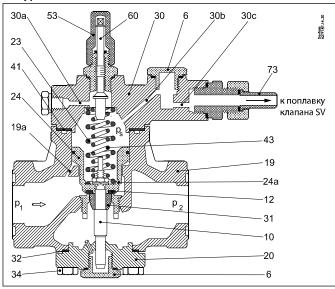
Для регулирования уровня жидкости в холодильных и морозильных установках, а также в системах кондиционирования воздуха используется клапан регулирования уровня жидкости типа PMFL или PMFH, которым управляет пилотный поплавковый клапан типа SV.

Системы PMFL и SV используются на стороне испарителя. Системы PMFH и SV используются на стороне конденсатора.

Такая система пригодна для использования с аммиаком или фторсодержащими хладагентами. Клапаны PMFL и PMFH можно использовать в жидкостных линиях, которые проведены к следующим устройствам или от них:

- испарители,
- отделители,
- промежуточные охладители,
- конденсаторы,
- ресиверы.

Плавное регулирование уровня жидкости осуществляется за счет впрыска жидкого хладагента пропорционально фактической производительности. Таким образом поддерживается постоянный объем дроссельного газа, что обеспечивает стабильное регулирование и экономичность работы, так как колебания давления и температуры сведены к минимуму.


Особенности

- Подходит для систем с ГХФУ, ГФУ и R717 (аммиаком).
- В основе конструкции клапанов PMFL/PMFH лежат корпуса семейства клапанов PM.
- Тот же ассортимент фланцев, что и для клапанов серии РМ.
- Корпус клапана отлит из низкотемпературного чугуна (с шаровидным графитом) EN GJS 400-18-LT.
- Предусмотрена возможность ручного управления.
- Имеется индикатор положения.
- Имеется штуцер для подсоединения манометра, чтобы контролировать давление на входе.
- Простой монтаж.
- Верхняя крышка главного клапана может быть установлена в любом положении, что не влияет на функционирование.
- Классификация: DNV, CRN, BV, EAC и т. п. Обновленный перечень сертификатов на продукцию можно получить в местном представительстве Danfoss.

Функции

PMFL

Фигура 1: PMFL

Когда уровень жидкости внутри поплавка падает, отверстие поплавка открывается. В результате более высокое давление рs, которое действует на сервопоршень, сбрасывается до уровня на стороне низкого давления, что приводит к открыванию клапана PMFL. Изменение уровня жидкости приведет к изменению давления на поршне и к изменению объема впрыска жидкости. При проектировании установки важно правильно выбрать набор пружин. Набор пружин следует выбирать из приведенной ниже таблицы:

Таблица 1: Переохлаждение

Переохлаждение		Перепад давления на главном клапане			
		бар	psi (фунт/кв. дюйм)	бар	psi (фунт/кв. дюйм)
K	F	4–15	58-218	1,2-4,0	17–58
0–8	0-14	Стандартный набор пружин		Набор пружин м	иалой жесткости
8-40	14–72	Набор пружин вы	ысокой жесткости		

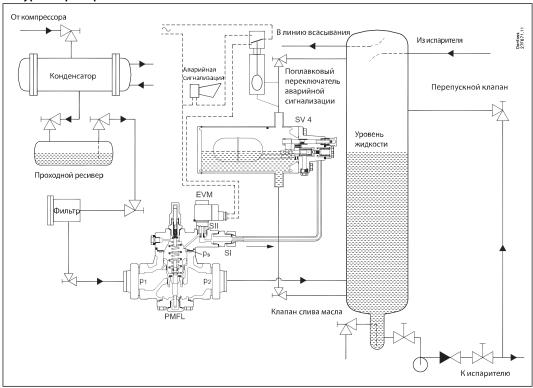
Установочный шпиндель, поз. 60, не отрегулирован на заводе-изготовителе. Перед вводом клапана в эксплуатацию необходимо отрегулировать установочный шпиндель. Наружная пружина, поз. 23, предварительно отрегулирована, а внутренняя пружина, поз. 43, регулируется при вращении шпинделя. В следующих таблицах показано, сколько оборотов шпинделя нужно сделать для регулировки внутренней пружины в зависимости от размера клапана, типа пружины и перепада давления:

Таблица 2: PMFL

PMFL	В комплекте со стандартным (установленным на заводе) набором пружин, переохлаждение 0–8 К					
	Перепад давления (Dp) на клапане PMFL, бар или psi					
	< 5 бар	5–8 бар	8–10 бар	10–12 бар	> 12 бар	
	< 72 psi	72-116 psi	116–145 psi	145–174 psi	> 174 psi	
80	Без натяжения	2–3	3–4,5	4,5-6	Прибл. 7	
125	Без натяжения	3–5	5–7	7–9	Прибл. 10	
200	Без натяжения	3–5	5–7	7–9	Прибл. 10	
300	Без натяжения	4–6	6–9	9–12	Прибл. 14	

Таблица 3: PMFL

	В комплекте с набором пружин высокой жесткости, переохлаждение 8–40 К		
PMFL	Перепад давления (Dp) на клапане PMFL, бар или psi		
FINIFL	6–9 бар	> 9 бар	
	87–131 psi	> 131 psi	
80	4	Макс. натяжение	
125	6	Макс. натяжение	


Таблица 4: PMFL

PMFL	В комплекте с набором пружин высокой жесткости, переохлаждение 8–40 К
	Перепад давления (Dp) на клапане PMFL, бар или psi
	6–16 Gap
	87–232 psi
300	Пружина всегда должна быть отрегулирована на макс. натяжение

Таблица 5: PMFL

PMFL	В компле	кте с набором пружин малой х	кесткости, установки низкого	давления	
	Перепад давления (Dp) на клапане PMFL, бар или psi				
	1,2–1,8 бар	1,8–2,5 бар	2,5–3 бар	3–4 бар	
	17-26 psi	26–36 psi	36–43 psi	43–58 psi	
80	Без натяжения	3–4	4–6	Макс. натяжение	
125	Без натяжения	4–6	6–8	Макс. натяжение	
200	Без натяжения	4–6	6–8	Макс. натяжение	
300	Без натяжения	5–7	5–7	Макс. натяжение	

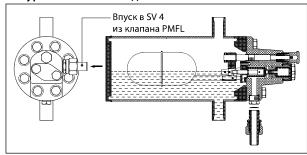
Фигура 2: Пример использования клапана PMFL

Число оборотов шпинделя приведено только для начальной настройки. Если используется индикатор положения, то при точной настройке клапана можно добиться более точного регулирования. Если клапан PMFL не открывается полностью, то необходимо уменьшить натяжение пружины. Если клапан PMFL работает в режиме ВКЛ./ВЫКЛ., то натяжение пружины следует увеличить. Давление конденсатора будет влиять на точную настройку, поэтому при больших изменениях давления конденсации может потребоваться повторная регулировка. Переохлаждение измеряется непосредственно перед клапаном PMFL, а перепад давления относится только к клапану, без учета трубопроводов и арматуры.

Клапан PMFL можно использовать вместе с клапаном SV 4, работающим в качестве пилотного.

Размер клапанного узла определяет значение K_{ν} (Cv) для пилотного клапана. В качестве начального руководства по выбору можно использовать следующую таблицу:

Таблица 6: PMFL


PMFL	SV 4-6		
PWIFL	Ø 2,5	Ø 3 (SV 4)	
80	X		
125	X		
200	X		
300		X	

Окончательный выбор клапанного узла зависит от типа хладагента и уровней давления. Чем ниже перепад давления, тем больше должен быть клапанный узел. При перепаде давления менее 3 бар требуется клапан SV 4-6 с диаметром отверстия 3 мм.

Поплавки SV для PMFL

SV 4 может использоваться для системы регулирования низкого давления PMFL. Поплавок должен подсоединяться так, как показано на рисунке.

Фигура 3: Поплавки SV для PMFL



1 ПРИМЕЧАНИЕ.:

для SV 4 возможно только одно входное присоединение.

PMFH

Фигура 4: PMFH

Если уровень жидкости внутри поплавка клапана SV повышается, то открывается отверстие поплавка и давление сбрасывается через пилотную линию в верхнюю часть клапана РМFH. Давление рѕ увеличивается, шток толкателя перемещается вниз, и клапан РМFH открывается. Пилотная линия подсоединена внутри

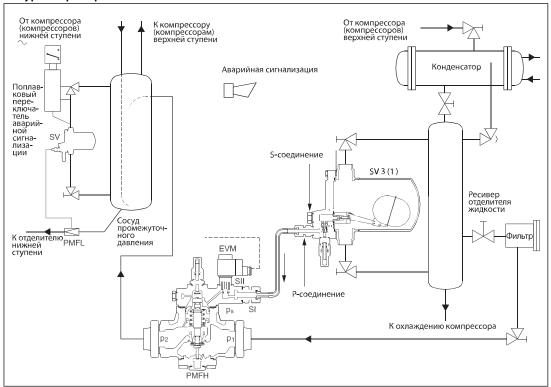

верхней крышки в позиции SI. Корректировать сигнал управления можно с помощью клапана EVM в позиции SII. При проектировании установки важно правильно выбрать набор пружин. Набор пружин следует выбирать из приведенной ниже таблицы:

Таблица 7: Выбор набора пружин

Перепад давления на главном клапане			
бар	psi	бар	psi
0-4,5	0–65	> 4,5	> 65
Набор пружин малой жесткости		Стандартный н	набор пружин

Клапан РМFH можно использовать совместно с клапаном SV 1 или SV 3, при этом клапан SV монтируется перепускным клапаном вниз, см. рисунок ниже. В этом случае режим открытия клапана становится обратным, так что при подъеме поплавка клапанный узел открывается.

Фигура 5: Пример использования клапана PMFH

1 ПРИМЕЧАНИЕ.:

Система высокого давления с поплавковым регулятором (только в качестве примера)

SV 1-3

Поплавковые регуляторы SV 1–3 имеют два разных пилотных штуцера: штуцер S (последовательное соединение с клапаном PMFH) или штуцер P (параллельное соединение с клапаном PMFH).

Штуцер Р:

При использовании соединения через штуцер Р можно принудительно перевести клапан РМFН в полностью открытое положение. Это полезно для целей обслуживания или для того, чтобы убедиться в достаточной производительности поплавка для данного клапана РМFН и данных условий эксплуатации. Однако при использовании соединения через штуцер Р возможно переполнение системы из-за постоянного стравливания или несанкционированного доступа. В этом случае рекомендуется ввести в систему запорный клапан, который будет срабатывать, когда уровень жидкости достигнет значения уставки. Перекрытие линии можно выполнить с помощью электрического переключателя, если клапан EVM установлен в штуцер SII в верхней части клапана PMFH. Штуцер Р рекомендуется использовать при небольшом перепаде давлений.

Штуцер S:

Штуцер S может выступать как дополнительный дросселирующий узел, который делит падение давления и снижает риск износа вследствие кавитации. Соединение через штуцер S должно использоваться при большом перепаде давления: dp > 10 бар. Значение K_v (Cv) для клапана SV больше при использовании штуцера P, чем при использовании штуцера S. Таким образом, можно получить более широкую зону пропорциональности.

Рабочая среда

Хладагенты

Подходит для систем с ГХФУ, ГФУ и R717 (аммиаком).

New refrigerants

Danfoss products are continually evaluated for use with new refrigerants depending on market requirements.

When a refrigerant is approved for use by Danfoss, it is added to the relevant portfolio, and the R number of the refrigerant (e.g. R513A) will be added to the technical data of the code number. Therefore, products for specific refrigerants are best checked at store.danfoss.com/en/, or by contacting your local Danfoss representative.

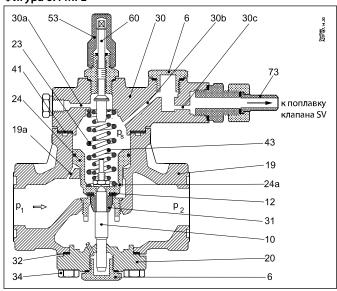
Спецификация изделия

Давление и температура

Таблица 8: Характеристики давления и температуры

Описание	Значения
Макс. рабочее давление	PMFL / H: MPД = 28 бар SV: MPД = 28 бар
Макс. испыт. давление	PMFL / H: Макс. испыт. давление = 42 бар SV: Макс. испыт. давление = 42 бар
Температура рабочей среды	От –60 до +120 °C

1 ПРИМЕЧАНИЕ.:

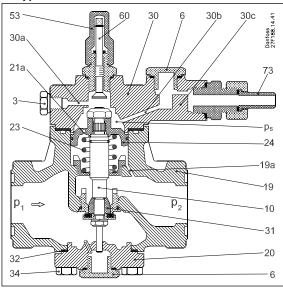

Макс. рабочее давление ограничено МРД = 21 бар при температуре рабочей среды: ниже −20 °C для клапанов из материала GGG-40.3

и ниже −10 °C для клапанов из материала GG-25.

Технические характеристики материала

PMFL

Фигура 6: PMFL


6	Герметичная заглушка.
10	Шпиндель клапана.
12	Седло клапана.
19	Корпус клапана.
19a	Канал в корпусе клапана.
20	Нижняя крышка.

23	Основная пружина.
24	Сервопоршень.
24a	Канал в сервопоршне.
30	Верхняя крышка.
30a.b.c	Каналы в верхней
	крышке.
31	Конус клапана.

43	Дополнительная пружина.
44	Штуцер для подключения манометра.
53	Крышка шпинделя.
60	Установочный шпиндель.
73	Штуцер для подсоединения пилотной линии.

PMFH

Фигура 7: PMFH

3	Штуцер для подключения
	манометра.
6	Герметичная заглушка.
10	Шпиндель клапана.
19	Корпус клапана.
19a	Канал в корпусе клапана.

20	Нижняя крышка.
21a	Канал в сервопоршне.
23	Основная пружина.
24	Сервопоршень.
30	Верхняя крышка.

30a.b.c	Каналы в верхней
	крышке.
31	Конус клапана.
53	Крышка шпинделя.
60	Ручное управление.
73	Штуцер для
	подсоединения пилотной
	линии.

Выбор регулятора

Пример выбора типоразмера для клапана PMFL

Таблица 9: Пример выбора типоразмера для клапана PMFL

пастица в предвижение домента в поставительной в поставительном в поставит	
Описание	Значения
Хладагент	R 717 (NH ₃)
Производительность испарителя	$Q_e^{}=600~\kappa B \tau$
Температура кипения	$t_e = -10$ °C ($\sim p_e = 2.9$ бар абс.)
Температура конденсации	$t_c = +30 ^{\circ}\text{C} \; (\sim p_c = 11.9 \; \text{fap a6c.})$
Температура жидкости перед клапаном	$t_{\rm l}$ = +20 °C при макс. производительности
Переохлаждение	Δ tsub = t _c – t _i = +30 °C – 20 °C = 10 К. В расчетах не учитываются потери давления в трубопроводах
Перепад давления на клапане	$\Delta p = p_c - p_e = 11.9 - 2.9 \text{Gap} = 9 \text{Gap}$
Поправочный коэффициент для переохлаждения в 10 К	0,98
Скорректированная производительность	600 κBτ \times $0.98 = 588$ κBτ

• примечание.:

Скорректированная производительность указана в таблице производительности. Из таблицы видно, что следует выбрать клапан PMFL 80-4. В таблице оформления заказа можно найти соответствующий код: 027F0053. Подробная информация о фланцах, принадлежностях и пилотном клапане приведена в разделе Информация для заказа.

Поскольку $\Delta p = 9$ бар и $\Delta t_{sub} = 10$ K, из таблицы «В комплекте с набором пружин ВЫСОКОЙ ЖЕСТКОСТИ» для клапана PMFL видно, что необходимо использовать набор пружин «ВЫСОКОЙ ЖЕСТКОСТИ». Пилотная линия соединяется с клапаном SV через штуцер S. В таблице оформления заказа можно найти код для набора пружин: 027F0118.

Пример выбора типоразмера для клапана РМFН

Таблица 10: Пример выбора типоразмера для клапана РМFН

The state of the s	
Описание	Значения
Хладагент	R 717 (NH ₃)
Производительность испарителя	$Q_{e}^{} = 2200 \text{ кВт}$
Температура кипения	$t_{\rm e}$ = –10 °C (\sim p $_{\rm e}$ = 2,9 бар абс.)
Температура конденсации	$t_c = +30 ^{\circ}\text{C} \ (\sim 11.9 \text{Gap a6c.})$
Температура жидкости перед клапаном	t _i = +20 °C
Переохлаждение	Δt sub = t_c – t_l = +30 °C – 20 °C = 10 К. В расчетах не учитываются потери давления в трубопроводах
Перепад давления на клапане	$\Delta p = p_c - p_e = 11.9 - 2.9 \text{Gap} = 9 \text{Gap}$
Поправочный коэффициент для переохлаждения в 10 К	0,98
Скорректированная производительность	2200 кВт × 0,98 = 2156 кВт

1 ПРИМЕЧАНИЕ.:

Скорректированная производительность указана в таблице производительности. Из таблицы видно, что следует выбрать клапан РМГН 80-7. В таблице оформления заказа можно найти соответствующий код: 027F3060 для клапана с сертификацией СЕ. Подробная информация о фланцах, принадлежностях и пилотном клапане приведена в разделе Информация для заказа.

Поправочные коэффициенты

При определении типоразмера умножьте производительность испарителя на поправочный коэффициент k в зависимости от переохлаждения Δt_{sub} непосредственно перед клапаном. Значение скорректированной производительности следует искать в таблице величин производительности.

Таблица 11: R 717 (NH3)

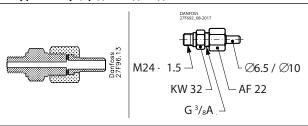

	R 717 (NH₃											
Δt K	2	4	10	15	20	25	30	35	40	45	50	
k	1,01	1	0,98	0,96	0,94	0,92	0,91	0,89	0,87	0,86	0,85	

Таблица 12: R 22

											R 22
Δt K	2	4	10	15	20	25	30	35	40	45	50
k	1,01	1	0,96	0,93	0,9	0,87	0,85	0,83	0,8	0,78	0,77

Подключения

Фигура 8: Штуцер для подсоединения пилотной линии (под сварку/пайку)

Холодопроизводительность

Таблица 13: Производительность, кВт

				R 71	- (3/		R 717 (NH ₃)					
Тип	Температур кипения		ная производ нде давления			Тип	Температур кипения		ьная произво аде давления			
	t _e ,°C	0,8	1,2	1,6	2		t _e ,°C	4	8	12	16	
	10	50	60	69	76		10	104	140	161		
	0	51	62	71	79		0	107	142	165	176	
	-10	53	64	73	81		-10	110	143	166	178	
MFL 80-1	-20	54	65	74	82	PMFL 80-1	-20	111	143	166	179	
	-30	55	66	75	83		-30	111	143	165	179	
	-40	56	67	79	86		-40	111	142	162	177	
	-50	56	67	75	82		-50	109	140	160	175	
	10	80	97	111	123		10	167	224	257		
	0	83	101	115	127		0	172	227	264	281	
	-10	85	103	118	130		-10	176	228	265	284	
MFL 80-2	-20	86	105	119	132	PMFL 80-2 PMFH 80-2	-20	177	238	264	285	
	-30	88	106	120	133	PIVIFII 6U-2	-30	177	227	262	284	
	-40	89	107	120	132		-40	175	225	258	281	
	-50	90	106	119	131		-50	173	222	253	277	
	10	127	154	176	194		10	264	353	404		
	0	131	159	182	201	PMFL 80-3	0	271	356	414	440	
	-10	134	163	186	205		-10	276	357	416	444	
MFL 80-3	-20	137	164	188	207		-20	278	356	413	445	
	-30	139	167	188	207	PMFH 80-3	-30	276	353	407	443	
	-40	140	166	187	205		-40	272	349	400	438	
	-50	139	164	184	201		-50	267	343	393	431	
	10	206	250	286	316		10	427	571	651	131	
	0	214	259	295	327		0	438	573	664	704	
	-10	219	264	301	333	PMFL 80-4	-10	444	572	665	709	
MFL 80-4	-20	222	267	303	334		-20	445	568	657	709	
WII E 00-4	-30	224	267	301	330	PMFH 80-4	-30	439	561	647	704	
	-40	223	263	295	323		-40	429	552	635	696	
	-50	219		288	315						685	
			257				-50 10	420	543	624	003	
	10	325	394	449	496		10	667	887	1010	1000	
	0	336	406	463	511		0	679	883	1020	1080	
	-10	344	413	470	518	PMFL 80-5	-10	685	874	1020	1080	
MFL 80-5	-20	347	414	468	514	PMFH 80-5	-20	680	864	1000	1080	
	-30	345	407	458	502		-30	666	852	984	1070	
	-40	338	396	444	486		-40	649	837	966	1060	
	-50	327	383	429	470		-50	632	823	948	1040	
	10	565	682	773	851		10	1130	1490	1670		
	0	584	700	792	869		0	1130	1460	1690	1780	
	-10	591	705	795	871	PMFL 80-6	-10	1130	1430	1670	1780	
MFL 80-6	-20	587	692	777	850	PMFH 80-6	-20	1110	1410	1640	1770	
	-30	571	666	746	816		-30	1080	1380	1610	1760	
	-40	546	636	712	781		-40	1050	1360	1570	1730	
	-50	520	608	684	751		-50	1020	1340	1540	1710	
	10	881	1060	1190	1300		10	1690	2220	2480		
	0	909	1080	1210	1310		0	1670	2150	2500	2610	
	-10	910	1070	1190	1300	DME! OO -	-10	1660	2090	2470	2610	
MFL 80-7	-20	887	1030	1150	1250	PMFL 80-7 PMFH 80-7	-20	1630	2050	2410	2610	
	-30	844	975	1090	1190		-30	1580	2010	2350	2590	
	-40	794	921	1030	1130		-40	1530	1970	2300	2550	
	-50	750	875	984	1080		-50	1490	1940	2250	2510	

				R 71	7 (NH ₃)					R 71	7 (NH ₃)
Тип	Температур кипения			дительность і на клапане		Тип	Температур кипения		ная произво іде давления		
	t _{e′} °C	0,8	1,2	1,6	2		t _{e′} °C	4	8	12	16
	10	1400	1690	1910	2100		10	2770	3650	4100	
	0	1450	1730	1950	2140		0	2770	3570	4140	4350
	-10	1460	1740	1950	2140		-10	2770	3500	4090	4350
PMFL 125	-20	1450	1700	1930	2080	PMFL 125 PMFH 125	-20	2720	3430	4010	4340
	-30	1400	1630	1820	1990		-30	2650	3370	3920	4300
	-40	1330	1550	1730	1900		-40	2570	3320	3840	4240
	-50	1260	1480	1660	1830		-50	2490	3260	3770	4180
	10	2250	2710	3060	3360		10	4410	5810	6530	
	0	2320	2770	3120	3420		0	4420	5680	6590	6920
	-10	2340	2780	3120	3410	DMEL 200	-10	4400	5550	6510	6920
PMFL 200	-20	2310	2710	3030	3310	PMFL 200 PMFH 200	-20	4330	5450	6370	6900
	-30	2220	2590	2890	3160		-30	4210	5360	6240	6830
	-40	2110	2480	2750	3020		-40	4080	5260	6110	6740
	-50	2000	2340	2630	2900		-50	3960	5170	5990	6640
	10	3420	4110	4650	4990		10	6690	8810	9880	
	0	3530	4210	4740	5180		0	6690	8600	9980	10500
	-10	3560	4210	4730	5170		-10	6660	8400	9850	10500
PMFL 300	-20	3500	4100	4590	5010	PMFL 300 PMFH 300	-20	6550	8240	9650	10400
	-30	3370	3910	4370	4780		-30	6360	8100	9430	10300
	-40	3190	3710	4160	4560		-40	6170	7960	9240	10200
	-50	3030	3540	3980	4380		-50	5990	7820	9050	10000
							10	10700	14100	15800	
							0	10700	13700	15900	16700
							-10	10600	13400	15700	16700
						PMFH 500	-20	10400	13100	15400	16700
							-30	10100	12900	15000	16500
							-40	9830	12700	14700	16300
							-50	9540	12400	14400	16000

Холодопроизводительность

Таблица 14: Производительность, кВт

таолица т	4: произво	лдинельн о	JCID, KDI									
					R 22						R 22	
Тип	Температу г кипения			одительность я на клапане		Тип	Температур кипения t _e ,°C	Номинальная производительность в кВт при перепаде давления на клапане ∆р бар				
	t _e , °C	0,8	1,2	1,6	2			4	8	12	16	
	10	11	13	15	17		10	22	28	31	32	
	0	12	14	16	18		0	23	29	32	33	
	-10	12	15	17	18		-10	24	30	32	34	
PMFL 80-1	-20	12	15	17	19	PMFL 80-1	-20	25	30	32	34	
	-30	13	15	17	19		-30	25	30	32	33	
	-40	13	16	18	19		-40	25	30	32	32	
	-50	13	16	18	19		-50	24	29	31	32	
	10	18	22	25	27		10	36	46	51	52	
	0	19	23	26	29		0	38	47	52	53	
	-10	20	24	27	30		-10	39	48	52	54	
PMFL 80-2	-20	20	24	28	30	PMFL 80-2 PMFH 80-2	-20	40	48	52	54	
	-30	21	25	28	31		-30	40	48	52	53	
	-40	21	25	28	31		-40	40	48	51	52	
	-50	21	25	28	31		-50	39	47	49	51	

					R 22						R 22
Тип	Температур			дительность на клапане /	в кВт при	Тип	Температур		ьная произво аде давления		
	кипения t _e ,°C	перепа 0,8	де давления 1,2	1,6	<u>ар оар</u> 2		кипения t _e ,°C	переп 4	аде давления	т на клапане 12	16
	10	29	35	39	43		10	57	72	80	82
	0	30	36	41	46		0	60	74	82	84
	-10	31	37	43	47		-10	62	76	82	85
PMFL 80-3	-20	32	39	44	48	PMFL 80-3 PMFH 80-3	-20	63	76	82	85
	-30	33	39	44	48	PIVIFH 8U-3	-30	63	76	81	83
	-40	34	40	45	49		-40	62	75	79	81
	-50	34	40	44	48		-50	61	73	77	79
	10	47	57	64	71		10	94	118	130	133
	0	49	59	67	74		0	98	121	133	136
	-10	51	61	70	77		-10	101	123	133	138
PMFL 80-4	-20	52	63	71	78	PMFL 80-4	-20	102	123	132	137
	-30	54	64	72	78	PMFH 80-4	-30	101	122	130	134
	-40	54	64	72	78		-40	99	120	127	131
	-50	55	64	71	77		-50	97	117	124	127
	10	74	89	102	112		10	147	184	202	206
	0	78	94	107	117		0	153	188	205	211
	-10	80	96	110	121		-10	157	190	205	212
PMFL 80-5	-20	83	99	112	122	PMFL 80-5	-20	157	189	203	210
	-30	84	99	112	122	PMFH 80-5	-30	156	187	199	206
	-40	84	99	110	120		-40	152	184	195	200
	-50	84	97	108	117		-50	148	179	189	194
	10	129	156	177	194		10	251	310	341	345
	0	135	162	184	202		0	260	314	343	352
	-10	140	167	188	206	PMFL 80-6	-10	263	315	341	353
PMFL 80-6	-20	142	168	189	205		-20	262	313	335	348
	-30	143	167	186	202	PMFH 80-6	-30	257	308	328	340
	-40	141	163	181	196		-40	249	302	320	331
	-50	137	158	175	189		-50	241	294	312	321
	10	202	242	273	299		10	381	466	510	515
	0	211	251	283	308		0	390	467	510	524
	-10	216	256	286	311		-10	393	465	504	523
PMFL 80-7	-20	218	255	283	307	PMFL 80-7	-20	389	461	495	516
	-30	215	249	275	298	PMFH 80-7	-30	378	454	483	503
	-40	209	240	265	286		-40	366	444	471	489
	-50	200	230	254	275		-50	353	433	458	473
	10	321	386	437	479		10	620	763	837	847
	0	336	402	455	498		0	639	770	842	864
	-10	346	412	464	507		-10	647	771	835	865
PMFL 125	-20	352	415	464	505	PMFL 125	-20	643	767	821	853
	-30	352	410	455	494	PMFH 125	-30	628	755	804	834
	-40	346	399	442	478		-40	609	739	784	810
	-50	335	386	426	461		-50	589	720	762	785
	10	515	618	700	767		10	990	1220	1330	1350
	0	538	645	728	796		0	1020	1230	1340	1380
	-10	555	660	742	810		-10	1030	1230	1330	1380
PMFL 200	-20	563	663	740	805	PMFL 200	-20	1020	1220	1310	1360
	-30	561	653	725	786	PMFH 200	-30	1000	1200	1280	1330
	-40	550	635	702	760		-40	969	1170	1250	1290
	-50	532	612	677	732		-50	937	1150	1210	1250

					R 22						R 22	
Тип	Температур кипения			дительності і на клапане		Тип	Температур кипения	Номинальная производительность в кВт при перепаде давления на клапане ∆р бар				
	t _e , ℃	0,8	1,2	1,6	2		t _e , °C	4	8	12	16	
	10	782	940	1060	1170		10	1500	1850	2020	2050	
	0	819	980	1110	1210		0	1550	1860	2030	2080	
	-10	843	1000	1130	1230		-10	1560	1860	2010	2090	
PMFL 300	-20	855	1010	1120	1220	PMFH 300 PMFH 300	-20	1550	1850	1980	2060	
	-30	851	990	1100	1190		-30	1510	1820	1930	2010	
	-40	833	961	1060	1150		-40	1470	1780	1890	1950	
	-50	804	925	1020	1110		-50	1420	1730	1830	1890	
							10	2410	2950	3240	3270	
							0	2480	2970	3250	3330	
							-10	2500	2970	3210	3330	
							-20	2480	2950	3160	3290	
							-30	2420	2900	3090	3210	
							-40	2340	2840	3010	3120	
							-50	2260	2770	2930	3020	

Размеры и масса

Фигура 9: PMFL/PMFH

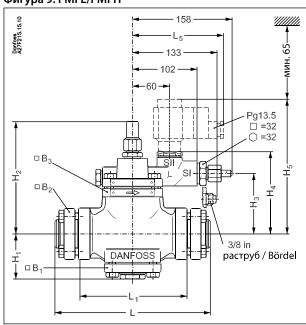
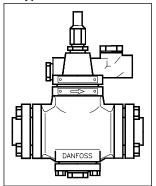


Таблица 15: Размеры и масса

тиолищ	тиолици тэт измеры и мисси													
									L ₅ M	акс.				Масса без
Тип		Н ₁ , мм	H ₂ , MM	Н ₃ , мм	Н ₄ , мм	Н ₅ , мм	L, mm	L ₁ , mm	10 Вт, мм	20 Вт, мм	В ₁ , мм	В ₂ , мм	В ₃ , мм	электрок клапана, кг
	80	66	162	79	113	176	177	106	130	140	75		87	7,0
PMFL	125	72	178	96	128	193	240	170	130	140	84	82	94	11,3
PMFH	200	79	187	105	138	202	254	170	130	140	94	89	102	14,2
	300	95	205	123	155	220	288	200	130	140	104	106	113	19,8
PMFH	500	109	227	146	176	242	342	250	130	140	127	113	135	28,3

Информация для заказа


Таблица 16: Номинальная производительность, кВт (1 кВт = 0,284 ТО)

Тип клапана	R 717	R 22	R 134a	R 404A	R 12	R 502
PMFL/H 80-1	139	27,8	22,1	33	17,4	30
PMFL/H 80-2	209	41,8	35,3	49,7	27,8	45,2
PMFL/H 80-3	348	70	53,1	82,7	41,8	75,2
PMFL/H 80-4	558	105	88,9	124	70	113
PMFL/H 80-5	835	174	133	207	105	188
PMFL/H 80-6	1395	278	221	330	174	300
PMFL/H 80-7	2080	435	353	569	278	470
PMFL/H 125	3480	700	552	831	435	755
PMFL/H 200	5580	1050	889	1243	700	1130
PMFL/H 300	8350	1740	1333	2068	1050	1880
PMFL/H 500	13900	2780	2210	3300	1740	3000

1 ПРИМЕЧАНИЕ.:

Номинальная производительность указана для температуры кипения $t_{\rm e}$ = +5 °C, температуры конденсации t_c = +32 °C и температуры жидкости t_l = 28 °C.

Фигура 10: Основной клапан Фигура 11: Основной клапан

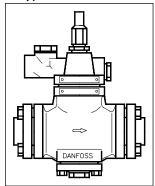


Таблица 17: Основной клапан

Тип клапана	Код для заказа	Ton washing	Код для заказа
	EN GJS 400-18-LT	Тип клапана	EN GJS 400-18-LT
PMFL 80-1	027F3054	PMFH 80-2	027F3065
PMFL 80-2	027F3055	PMFH 80-3	027F3066
PMFL 80-3	027F3056	PMFH 80-4	027F3067
PMFL 80-4	027F3057	PMFH 80-5	027F3068
PMFL 80-5	027F3058	PMFH 80-6	027F3069
PMFL 80-6	027F3059	PMFH 80-7	027F3070
PMFL 80-7	027F3060	PMFH 125	027F3071
PMFL 125	027F3061	PMFH 200	027F3072
PMFL 200	027F3062	PMFH 300	027F3073
PMFL 300	027F3063	PMFH 500	027F3074

• примечание.:

Указанные коды для заказа относятся к главным клапанам типа PMFL или PMFH, включая фланцевые прокладки, фланцевые болты, заглушки и штуцер для подсоединения пилотной линии с использованием приварного ниппеля Ø 6,5 / Ø 10 мм.

Набор пружин

Фигура 12: Набор пружин

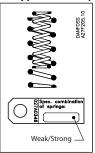


Таблица 18: Специальный набор пружин для клапана PMFL

Переохлаждение	Перепад давления Δр в клапане PMFL		Штуцер для подсоединения			МАЛАЯ ЖЕСТКОСТЬ	ВЫСОКАЯ ЖЕСТКОСТЬ
Δtu K	4–15 бар	1,2–4 бар	пилотной линии, только на клапанах SV 1–3	Поз.	Тип PMFL	MECIROCID	MECINOCID
	Набор	пружин				Код для заказа	
0-8	СТАНДАРТ	МАЛАЯ ЖЕСТКОСТЬ	Р	23 + 43	80-1-80-7	027F0123	027F0118
	DUICOVAG				125	027F0124	027F0119
8-40	ВЫСОКАЯ ЖЕСТКОСТЬ	C	d	200	027F0125		
		MECINOCID			300	027F0126	027F0121

Таблица 19: Специальный набор пружин для клапана РМFН

Перепад давления Δp в клапане РМFH, бар	Тип	МАЛАЯ ЖЕСТКОСТЬ	
перепад давления др в клапане гигп, оар	P 1911	Код для заказа	
	PMFH 80.1-7	027F2190	
1–4	PMFH 125	027F2191	
1-4	PMFH 200	027F2192	
	PMFH 300	027F2193	

<u>Фланцы</u>

Фигура 13: Фланцы

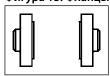


Таблица 20: Фланцы

Tururaraua	Тип	Приварны	Приварные фланцы		Фланцы под пайку			
Тип клапана	фланца	дюймы	Код для заказа ⁽¹⁾	дюймы	Код для заказа ⁽¹⁾	мм	Код для заказа ⁽¹⁾	
		3/4	027N1220	7⁄8 1 ¹∕8		22 28		
PMFL 80 / PMFH 80	12	1	027N1225		027L1223 027L1229		027L1222 027L1228	
		11/4	027N1230		02,2122		02/21220	
PMFL 125 /	23	11/4	027N2332	13/8	027L2335	35	027L2335	
PMFH 125	23	11/2	027N2340	1-76				
PMFL 200 /	24	11/2	027N2440	15/8	027L2441	42	027L2442	
PMFH 200	24	2	027N2450	1-78	027L2 44 1	42	02/12442	
PMFL 300 /	25	2	027N2550	21/8	027L2554	54	027L2554	
PMFH 300	2½ 027N2565	278	02/12334	34	02712334			
PMFH 500	26	21/2	027N2665	25/8	027L2666	76	027L2676	
1 111111 300	20	3	027N2680	270	027 22000		02,220,0	

⁽¹⁾ Код для заказа относится к одному комплекту фланцев, состоящему из одного впускного и одного выпускного фланца.

• примечание.:

Эскиз фланца с размерами приведен в каталоге запасных частей.

Нержавеющая сталь: фланцы, болты для фланцев, а также верхняя и нижняя крышки, см. каталог запасных частей.

Пилотные клапаны

Фигура 14: Пилотные клапаны SV 1-3

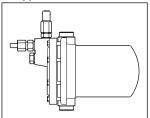


Таблица 21: Пилотные клапаны SV 1-3

Тип	Подключение		Код для заказа			
Поплавковый пилотный клапан типа SV	Уравнительный трубопровод, жидкость/пар	Пилотная линия	SV 1: 027B2021 027B2021CE	SV 3: 027B2023 027B2023CE		
	1 дюйм. Сварка	Приварное соединение Ø 6,5 / Ø 10 мм ⁽³⁾	(2)	(2)		

⁽²⁾ Клапаны признаны соответствующими требованиям директивы ЕС 97/23/ЕС на оборудование, работающее под давлением, и имеют маркировку СЕ.

Фигура 15: Пилотные клапаны SV 4

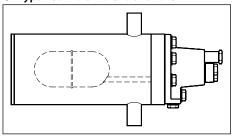


Таблица 22: Пилотные клапаны SV 4

Тип клапана	Диаметр отверстия	Код для заказа	Код для заказа без корпуса ⁽⁴⁾
SV 4	Ø 3,0 мм	027B2024 ⁽⁵⁾	027B2014 ⁽⁵⁾

⁽⁴⁾ Фланец для монтажа без корпуса, код для заказа: 027В2027.

О ПРИМЕЧАНИЕ.:

Указанные коды для заказа относятся к поплавковым клапанам типа SV 4, SV 5 и SV 6 с двумя штуцерами под сварку с присоединительным размером 1 дюйм для уравнительных трубопроводов и двумя переходниками под сварку с присоединительным размером $\frac{1}{2}$ дюйма для присоединения жидкостной линии и испарителя.

Запчасти и дополнительные принадлежности

Диафрагмы с отверстиями меньшего размера для клапана SV 4 поставляются в качестве запасных частей.

Комплект уплотнений: 027В2070

Таблица 23: Код для заказа специальной диафрагмы для клапана SV 4

Диаметр отверстия	K,	Код для заказа ⁽¹⁾
Ø 1,0 mm	0,026	027B2080
Ø 1,5 mm	0,06	027B2081
Ø 2,0 мм	0,1	027B2082
Ø 2,5 мм	0,16	027B2083
Ø 2,8 мм	0,2	027B2084

^{(3) 3%-}дюймовый штуцер под отбортовку, код для заказа: 027В2033.

⁽⁵⁾ Клапаны признаны соответствующими требованиям директивы ЕС 97/23/ЕС на оборудование, работающее под давлением, и имеют маркировку СЕ.

Фигура 16: Комплекты пилотных клапанов (EVM и катушка)

Таблица 24: Комплекты пилотных клапанов (EVM и катушка)

Катушки, 10 Вт перем. тока	Переменный ток: 027В1122хх, где хх может означать
110 В, 60 Гц	21
220 В, 50 Гц	31
220 В, 50/60 Гц	32
240 В, 50 Гц	33

1 ПРИМЕЧАНИЕ.:

Может крепиться винтами на клапане PMFL или PMFH вместо заглушки.

Фигура 17: Дополнительные принадлежности

Таблица 25: Дополнительные принадлежности

, ,,	
Описание	Код для заказа
Штуцер для подсоединения манометра Ø 6,5 / Ø 10 мм, под сварку/пайку	027B2035
Штуцер для подсоединения манометра, / дюйма под отбортовку (самозакрывающийся) (не должен использоваться на аммиачной установке).	027B2041
Штуцер для подсоединения манометра — 6 мм Присоединение врезным кольцом — 10 мм	027B2063 027B2064
Штуцер для подсоединения манометра — NPT $^{1}\!\!/_{4}$	027B2062
Блок ручного управления для клапана PMFL. Может устанавливаться вместо нижней заглушки регулятора	027F0128
Штуцер для подсоединения пилотной линии,/дюйма под отбортовку, для клапана SV	027B2033

⁽¹⁾ Позиции включают в себя диафрагму и все необходимые прокладки.

Сертификаты, декларации и разрешения

Список содержит все сертификаты, декларации и согласования для данного типа изделия. Для индивидуальных кодовых номеров могут иметься некоторые или все из этих согласований, а некоторые местные согласования могут быть не указаны в списке.

Некоторые согласования могут со временем изменяться. Можно проверить текущий статус на интернет-сайте danfoss.com или обратиться к местному представителю компании Danfoss, если у вас возникли вопросы.

Таблица 26: Сертификация

Тип	Имя	Тип документа	Тема документа	Сертифицирующая организация
PMFH	Д-DK.БЛ08.В.03759	Декларация ЕАС	Машины и оборудование	RU
	033F0685.AK	Декларация ЕС	EMCD/PED	Danfoss
	033F0686.AH	Декларация производителя	PED	Danfoss
	033F0691.AE	Декларация производителя	RoHS	Danfoss
	Д-DK.БЛ08.В.00189_18	Декларация ЕАС	EMC	RU
	Д-DK.БЛ08.В.00191_18	Декларация ЕАС	Машины и оборудование	RU
DAAFILU	Д-DK.PA01.B.72054_20	Декларация ЕАС	PED	RU
PMFH/L	033F0474.AC	Декларация производителя	ATEX	Danfoss
	0B22768.5267890YTN	Давление: сертификат безопасности	CRN	TSSA
	0045 202 1204 Z 00354 19 D 001(00)	Давление: сертификат безопасности	PED	TÜV
	SA7200	Механическая часть. Сертификат безопасности		UL
	033F0685.AK	Декларация ЕС	EMCD/PED	Danfoss
	033F0691.AE	Декларация производителя	RoHS	Danfoss
	Д-DK.БЛ08.В.01120_19	Декларация ЕАС	EMC	RU
	Д-DК.БЛ08.В.00191_18	Декларация ЕАС	Машины и оборудование	RU
	Д-DK.PA01.B.72054_20	Декларация ЕАС	PED	RU
SV	UA.1O146.D.00069-19	Декларация ЕА	PED	LLC CDC EURO-TYSK
	UA.TR-089.1112.01-19	Давление: сертификат безопасности	PED	LLC CDC EURO-TYSK
	033F0473.AD	Декларация производителя	ATEX	Danfoss
	0045 202 1204 Z 00354 19 D 001(00)	Давление: сертификат безопасности		ΤÜV
SV 1-3	SA7200	Механическая часть. Сертификат безопасности		UL
SV 4-6	19.10327.266	Морская техника: сертификат безопасности		RMRS

Таблица 27: Директива EC об оборудовании, работающем под давлением (PED)

Клапаны PMFL / PMFH признаны соответствующими требованиям директивы EC 97/23/EC на оборудование, работающее под давлением, и имеют маркировку CE. Более подробная информация приведена в инструкции по установке.

Таблица 28: Соответствие

Клапаны PMFL / PMFH ⁽¹⁾						
Условный диаметр	Условный диаметр DN ≤ 25 (1 дюйм) DN 32-125 мм (1 ¼-5 дюймов)/ DN 150 мм (6 дюймов)					
Класс применения	Жидкости группы I					
Категория	Статья 3, параграф 3	II	III			

⁽¹⁾ Маркировка СЕ применима только к моделям EN GJS 400-18-LT.

Онлайн-поддержка

«Данфосс» предлагает широкий спектр поддержки наряду с нашей продукцией, включая цифровую информацию о продукции, программное обеспечение, мобильные приложения и экспертные консультации. См. возможности ниже.

Магазин продукции «Данфосс»

Магазин продукции «Данфосс» — это универсальный магазин для всех видов сопутствующих изделий, независимо от того, в какой точке мира вы находитесь и в какой сфере холодильной промышленности вы работаете. Получите быстрый доступ к важной информации, такой как характеристики изделий, кодовые номера, техническая документация, сертификаты, принадлежности и многое другое.

Начните просмотр на веб-сайте store.danfoss.com.

Найти техническую документацию

Чтобы найти техническую документацию, вам необходимо найти и запустить свой проект. Получите прямой доступ к нашей официальной подборке технических паспортов, сертификатов и деклараций, руководств и указаний, 3D моделей и чертежей, практических примеров, брошюр и многое другое.

Начните поиск здесь www.danfoss.com/en/service-and-support/documentation.

Danfoss Learning

Портал Danfoss Learning — это бесплатная обучающая онлайн-платформа. Она включает курсы и материалы, специально разработанные для того, чтобы помочь инженерам, монтажникам, специалистам по обслуживанию и оптовым поставщикам лучше понимать изделия, применения, отраслевые темы и тенденции, которые помогут вам лучше выполнять свою работу.

Бесплатно создайте учетную запись на портале Danfoss Learning здесь www.danfoss.com/en/service-andsupport/learning.

Spare Parts

Get access to the Danfoss spare parts and service kit catalog right from your smartphone. The app contains a wide range of components for air conditioning and refrigeration applications, such as valves, strainers, pressure switches, and sensors.

Download the Spare Parts app for free at www.danfoss.com/en/service-and-support/downloads.

Coolselector®2 — подберите лучшие компоненты для системы отопления, вентиляции и кондиционирования воздуха

Coolselector®2 позволяет инженерам, консультантам и проектировщикам легко находить и заказывать лучшие компоненты для систем охлаждения и кондиционирования воздуха. Выполните расчеты на основе рабочих условий, а затем выберите оптимальную конфигурацию для своего проекта.

Центральный офис - ООО "Данфосс"

Climate Solutions • danfoss.ru • call@danfoss.ru

Любая информация, включая, но, не ограничиваясь информацией о выборе продукта, его применении или использовании, конструкции продукта, весе, размерах, производительности или любых других технических данных в руководствах к продукту, описаниях каталогов, рекламных объявлениях и т. д. и вне зависимости от того, предоставлены ли они в письменном, устном, электронном виде, онлайн или посредством загрузки, считается лишь рекомендательной и является юридически обязывающей только в том случае и в той степени, в каких об этом сделаны явные указания в ценовом предложении или подтверждении акаказа. Компания Danfoss оставляет за возможные ошибки в каталогах, брошюрах, видео и других материалах. Компания Danfoss оставляет за собой право изменять свои изделия без предварительного уведомления. Это также относится к заказанной, но не поставленной продукции при условии, что такие изменения возможны без внесения изменений в форму, пригодность или функциональность продукции. Все товарные знаки в этом материале являются собственностью Danfoss A/S или группы компаний Danfoss. Danfoss и логотип Danfoss являются товарными знаками компании Danfoss A/S.

Все права защищены.